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1. INTRODUCTION

The proper application of stiffeners, i.e., stiffen-
ing ribs fixed to a plate, leads to an increase’ of the

Lg strength of rectangular plates. In’calculating
.c?dplates, we have to distinguish’ %etween:

Plates with large spacing of the stiffeners in
he lending stiffnesses of the plate and ribs appear
ely in the calculation, and

Plates with small stiffener spacings for which
ding stiffness of -elate and stiffeners in the direc-
the stiffeners ca~ be combined to a new bending
Ss, provided the stiffeners all have the’ same cross
9 In general, we are allowed to treat such plates

as orthotropic plates.

The first investigation on the stability of plates,
corresponding to 1) a%ove, was made by Timoshenko (refer-
ence 2), who calculated the buckling stress of plates with
one, to three longitudinal or transverse stiffeners with
equa”l spac”ings. He conq$dered hinged plate edges and two
loadings, uniforti compression and pure shear. It is well
to note here that in the following discussion’ those stif-
feners in the direction” of the normal loading are called
longitudinal , and those perpendicular to the direction of
loadi’ng are called transverse.

Timoshenko uses the energy method for solution, a
method which was applied by Bryan (reference 3) in his
classical work on the buckling of a rectangular plate, and
which was later o“~ -’ taking into consideration the mass
forces -- exactly ‘proven by Reissner (reference 4). Recent-
ly the stiffened plate with one longj.tudina,l stiffener in
.—-———..— _______ ______ ____

*ilStabilit&t .gleichm&ssig gedr~ckter Rechteckplatten mit
L&ngs- oder Quersteifen.lt Ingenieur-Arclliv, vol. 8,
no- 2, 1937, pp. 117-1500

I
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the middle of the compression field, i.e. , the middle of
the plate, stressed by pure bending, compression, or shear,
was considered hy Chwalla (references 5 and 6), and the
problem was”&olved a“lio with the aid of the energy method.

In the application of the energy method, the ~~ave form
is assumed to he represented by a series which satisfies
the boundary conditions, ,and the coefficients of which are
determined by minimum energy considerations. : The more ex-
actly the assumed shape of the wave pattern agrees with
the actual pattern, the less terms in the summation are
necessary for a sufficiently accurate calculation of the
%uckling stresses. Exact buckling conditions in a finished
form cannot %e developed with this method. However, for
some cases, concerning the loading and the reactions of the
plate, we have complete solutions of the differential equa-
tion and in these cases the “Duckling conditions can be rep-
resented exactly. As the stiffened plate consists of a num-
ber of nonstiffened. ~rips which are connected with each
other along the stiffeners, the solutions of the differen-
tial equation for the nonstiffened plate can %e accordingly
applied to the stiffened plate.

??or the unstiffened plate Timoshenko (reference 7),
Reissner (reference 8), and in a more complete manner,
Ch?valla (reference 9) have set up the %uckling conditions
for uniform compression in one direction, the loaded edges
beinq hinged with optional support of the longitudinal
edges; with the aid of the complete solution’of the differ-”
ential equation. The solutions for supported transverse
edges and hinged longitudinal edges originate from .
Schleicher (’reference 10).

With shear stresses, complete solutions are known only
for the infinitely long strip. The fundamental investiga-
tion for this is the work of Southw%ll and Skan (reference
11), in which ‘pure shear stress with hinged and fixed lon-
gitudinal edges is investigated. Schmieden (reference 12)
develops solutions for combined shear and compression of
the infinitely long strip.

,In the present paper, the complete buckling conditions
of stiffened plates” are being developed for uniform compres-
sion. We shall treat plates with one or two longitudinal

,, or transverse stiffeners at any point, discuss the lmckliw
conditions, and eval’uate them for different cases.
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For the special case with any number of longitudinal
..-, sti.ffqners with equal dimensions and witk equal spacings,

Lokshin (reference 13’) h-ascalculated -the buckli.n.g,..cqniii=
tio’ns. However, as we shall prove in the following”, these
buckling conditions are not complete.

II. PLATI!!WITH LONGITUDINAL STIFFENERS

1. General Erincimles.-..——. The rectan@ar plate with
the lenqth-width ratio a = a/3 is equipped with longitu-
dinal stiffeners at the points y = bl, y = 1)1 + %J2, etc.,

by which it is dibided into several nonstiffened areas
with the ratios al = a/bl, CL2 = a/b2 ....~= a/~ (fig.
1). If the plate is loaded with uniform normal stresses
ox at the edges x = O and x = a, the buckling deforma-
tion m = ‘w(x,y) of the plate middle area inside of any
field i satisfies the differential equation:

in which ‘D= E t=————- ——---
12(1 -Vz)

is the stiffness and t is the thickness of the plate.
Considering the ratios

In .Teference to the width bl of the firsterence 14).

plate field, the differential equation’ (“1)’’cha’ngesinto
,

(2)

,,

Under the assumption of hinged mounting, (w = Aw = O)
at the borders E = O and e“=’al, which is valid for the
following consideratioils, the differential equation (2),$s

,. “
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satisfied by the equation*

(3)
Substituting this solution in equation (2), we obtain
for the function ymi(’0). which only depends upon n, for

every value mi , {he ordinary differential equation

the solution of which is

‘Ymi = Ai sinh Kli ‘1’l+ Bi cosh Kli ~ +

+ Ci sin Kai ?l+ Di COS ~2i q

(4)

(5)

in which

**
For determining the constants Ai to Di , we have

homogeneous equations at our disposal; the solutions ~+
O are only for special values Cp~$ the so-called 3uck-
ling values kl, with the critical lmckling stresses

ok = kl ale. Xvery term of the solution (3) satisfies the

boundary conditions at the borders t = O and [ = ~1:
therefore for each value mi ‘ouckling values kl can be
calculated, the buckling areas of which run in a sine curve
in the ~-direction with mi half-waves. As every two ad-

joining fields are continuously connected along the longi-
tudinal stiffeners, it is necessary for obtaining the buck-
ling, sine-shaped in the {-direction, that the number of
half-waves in %oth fields - and therefore in all fields -
be the same. For this reason, we can put
————__— ________ ________________.________—_—

*This expression, by which the buckle in the ~-direction
is assumed to be a sine-curve, was used by Timoshenko,
Reissner, and others for problems of stability; actually,
it is even older and was formerly used in pro%elms for bend-
in.

$
of rectangular plates.

** he constants Di with the subscript i must not he

confuse”d tvith the stiffness of the plate D.



I?.A. C.A. Technics.l Memorandum.No.,904 5

mi I=m, %li = Vmt K:~ ‘“K~

The values KI “ “ K2and “a’re“re’aif“or the “actually
occurring cases, since the buckling stresses of the stiff-
ened plate, whose borders ? =Oand Tl= 1/%1 = B are

generally strengthened by some form of support, are greater
than the minimum values of the real solutions (n#/z; = Vm)

which give the Euler critical stress

ma IT2 D~k = ———.—.
a= t

of the strip with the length “a, whose longitudinal edges
are under uniform compression

As will be shown in the next section, we have, for
determining the 4r constants Ai, Bi, Ci, Di (i = 1, ~,

● *9 r) four boundary conditions at the horders o = O and

and ‘0= b/bl = ~ and, furthermore, 4(r - 1) transition-
al conditions at the stiffeners which form a system of 4r
homogeneous equations. We Obtai.il the buckling condition
with the aid of these equations by putting the determinant
of the denominator equal to zero. Cnly the minimum values
of the roots of the buckling equations are of interest, the
other roots representing higher lmckling values,

The buckling values “k” with respect to the total
width b of the plate, i.e., (reference 14) k = Ox/Oe ,
are calculated from kl :

2. Boundar~and transitional conditions.- At the———. —
borders ~

—-—_________ ____ ____
= O and n=$, the plate is generally con.

netted to edge supports. In many cases these supports
have relatively large and compact cross sections, so that
a certain elastic mounting of the plate with them is given.
This mounting should be taken into account in the general
%oundary conditions. (See reference 9. )

For the stiffeners and supports O to r, respec-
tively, we introduce the following notations:
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F. to Fv, cross sections

~ JTO tO E J~r> bending stiffness about t axis

G To to G Tr, torsional stiffness*

Alonq the border line ‘il= O between the field 1
and the support O, there acts as an internal force the
l)ending moment

(

2 a2~ ‘1a ‘1 * ~ ___A

“T=”+xi=
(6)

3~2~

and the reaction forces

D

(

3 3

qm = “ ;2-
)’

s+ + (.2 . ~) ~–fl~

aq af2aq
(7)

of the plate field 1, which, if we consider the p~ate cut
off along the support, are to be applied as external loads
to the support (fig. 2).

The bending moments mq create a torsional stress in

the support. The change of the total torsional moment ‘t
acting at the point ~ is therefore

Under the assumption that the change of slope of the
cross sections can be neglected in the torsion considera-
tion, which applies exactly only for circular and ring-
shaped plates, but can le approximately assumed for other
shapes, the mutual. twisting d~ of the stiffening element
1)1 d~ is:

and from this follows:

~.--.-.----------____-__-.-A-=-----------------------

The values To to Tr may be taken from the results of
Weber:s work (reference 15) or from that of l?~rster (ref-
erence 16).
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On account of the contj,n~ous connec’ti.on of stiffener
,.. and-plate, the twisting of the stiffener $s equal

slope of the plate, i.e.-~ ,...
,,

, ..

a
~W~

*tan4=—-
bl am

therefore

=G!CO d23 a3w1
.mn

.-— —- =GTO -——-.
l)le d~z b13 a g,2am

so that the first boundary condition at the ‘point
is

D
(

3
?fv?l * ~ a2w1

~zr
. —-

~~ )
———
3[2 = G To —-~fl~5--

1 b13~~t171

to the

,’

V=o

(8)

The reactions qq of the plate field 1 create in the
support a bending moment Mv about the q-axis, assuming
the border of the plate to be at the shear center of the
support. If, at the same time, the support is acted on ly
the compression stresses Oxk , then, at its ends, we have
the compression forces

P. = axk To = kl ale F.

which at the point ~ induce the bending moment, P. WI .
For the bending of the stiffener which, on account of the
continuous connection between it and the sheet, agrees
wit’h the deflections WI for 9=0, we have therefore
the differential equation

From this, by differentiating twice with respect to g a
second boundary condition for ?l= O is obtained:.“

(9)

For the support r, i.e., for ~ = P, the corresponding

I 111111111111111 ,- --,,----
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%oundary conditions are

(lo)

and

Between the adjoining fields i and i+l, there
is the stiffener i’ with the cross section l?i and the

moment of inertia Jvi about the ‘n-axis. At the’ stiff-

ener, the conditions of continuous connection to the sheet
have to be first satisfied. Therefore, for

we obtain

and

(13)

Since the cross sections of the stiffeners generally
have I, L, or Z forms, indicating no great torsional
stiffness, we may neglect the torsional stress which oc-
curs in the stiffeners due to the bending of the plate.
The experiments of Erlemann (reference 17) justify this
assumption. The moments m~ of the fields i and i+l

at the stiffener are therefore equal, i.e. ,

Along the stiffener, we have, as a further condition of
the continuity

(14%)

so that the transitional condition” f14a) becomes
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Considering the fields i and
stiffener, a transitional condition

(14.)

i+’1 as cut off at the
corresponding to bound-

ary condition (9) applies, but instead of the’ reaction force
of the border field, the difference between the reactions
of the fields i and i-l-l, adjoining at the stiffener,
have to he introduced. Therefore,

(Z5a)

Considering equations (13? and (14b), we have at the stiff-
ener,

(15b)

so that the transitional condition (15a) is simplified to

(15)
In the term on the left side and the last term

of the right side, the index i of w may be replaced
%y i+l, as it makes no difference to which of the ad-
joining fields the deflections of the stiffener are refer-
enced. Equation (15) applies exactly only to the symmet-
rically connected stiffener, the neutral axis of which co-
incides with that of the plate. In many cases, the stiff-
ener will %e fastened only on one side of the plate, In
this case, according to the proposition of Timoshenko (ref-
erence 2), the moment of inertia J?ti must be referred to

the axis which lies in the connecting surface between the
stiffener and plate. The additional stresses in the plate
which arise from this condition are not taken into consid-
eration. They fade very fast along the effective width in
the ~-direction, according to statements hy Chwalla (refer-
ence 18).
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— e,sin/1x, —e*cosf!lx,
+Y2x*cos /?%* — Y,X2sin~X8

—%, c,Cos/l%,
I

x,Casin/?x,
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,.

In the following, we take the ratios” b“etheen bending,.
stiffnesses, dbpendent..upon the cross sections of the, stiff-
eners, and those of the plate from Tirnoshtinko (“reference--2):

and, to abbreviate, we place

and

After introducing the solution (3) in the boundary
and transitional conditions (8) to (15), the following
equations, independent of ~ are obtained, which serve
determine the constants A to D in the fuilctions Y. In
these equations the index m (m = num%er of half-waves

to

in
the ~-direction) is omitted for reasons of simplification.

Yr’’+llfr Yrh+.Lv2Yr =0

}

(lo’)
for 7=$

+ Y;*U (11 ‘)v= (2-p) Yrt - or Yr = o

1
Yi -Yi+l =o (121)

Y{.-.y;+l = o
bl+ba+ ... +bi (13~)

for =T .———-~
Y;’ - Y:+x =0 bl–--––-

(14’)
1!f

‘Yi + Y~~l+@iyi= O (15’)
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3. Plate” with one longitudinal stiff ener. -= In the——.——.——. ——————= —————-——.—.———-————.,.
case of one longitudinal stiffener,. r = 2. With the so-
lutions,

WI = Y1 sinv ~, Y1 =Al sinh Kl?l+ B1 cosh K1 ~ +

+ c1 sin K2 ?l+ DI cos K= Tl,

-1- C2 sin K2 q + D2 cos K2 q

we o-otain from (8 !) to (15 ~) a system of homogeneous equa-
tions, the coefficients of which, with the abbreviations

2
el = K1 - I.@, e2 = K22 + v V2

Cl = K12 - V2(2 - p), ‘2 = K2a + V2(2 - V)

(el + ea = c1 + C2 = K12 + K22)

are shown in table 1. This table is, at the same time,
the denominator determinant to %e solved, the lines of
which are denoted by- the numbers 1 to 8, and the columns
by the letters a to h.

a) Solution of the determinant and the general buck-———————._———.—___————____——__———— _————_————
lin~ conditions.- Solving this determinant, we denote the
suldeterminants as follows:

I1,2a -b9

is the su%determinant which is o%tained from the complete
determinant %y canceling the lines 1 and 2 and the col-
umns a and b. The determinants marked .with overlining
are to be forined from the su%detcrrninants on the left side
of the equation.

After eliminating the lines 1 and 2, the determi-
nant becomes: *
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)
Id

1,2
+ K2 (Wo@o+c2e Z C,

..,.

13

(16)

The lines 1 and 2 contain oni.y the unknowns Al to Dl, the

lines ‘7and 8, only the unknowns Aa to D2. According to

this, the lines 1 and 2 are independent of the lines 7 and
8, so that in the following elimination of the lines 7 and 8,
the subdeterminants

II1, 2 1, 2

Ia, II ‘ ● “” c, d

with p = a, b, c, and q = b, c, d (p + q) occurring
in (16), may he generally deiloted by

+@2(Kla+K22) sinh ~ KI sin ~ Ka +
—.——

II7, 8
+ Ya K1 K2 (K12+K22) cosh ~ K1 cos s Ka] ~, ~



(17)

The solution of the remaining subdeterminants with
four columns gives the following values:

I,z,7, 8 0,a, b, e, f =
1>Z, 7, 8 . — @l X2 (x; + x;) CofxlcosX2,a, b, e, g
I,2,7, 8

= — CDlX2 (z; + 2$) Cof2t1sinX2,a, b, e, h
1>Z>7, 8 _— — 01X2 (z! + xi) SinxlcosZ2,
a,b, j,g
I>~,7, s _— — 01X2(z:+ z:)Sinzlsinz2,
a,b, j, II
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1,2,7/8~=+z1z2(x; +z;)2,
a,b, g, h]

, ,...,. I,2,7, 81,= + @l.%2.(x~,+z:).6Di%lcos?2, ,, .,,.., _ ., ., -,,,
a, c, e, f
I,2,7,8’ = o,a, c, e, g

I,Z> 7, 8\_ — q %2(%; + z:) &D~2x~,a, c, e, h.i—

I, 2,7, 8 = + 01 ~ (x; + w;) CCE2X2,
a, c, f, g
I,2,7, 8
a,c,f, h = (z;+@[–z1x2(z;+X1)401 (zlsinz2cosX2– X2GinxlQtof@],

I,2,7,8
= + q xl(x;+ x;)Eoj% CosX2,

a,c,g, h

I,2,7, 8
= + @l X2 (x; + x;) &ofXlsinx2,a,d, e, f

I, 2,7, 8
= + CDl%2(X; + @ (Sof2x~,

a, d, e, g

I, 2,7, 8 =0,
a, d, e, h

I,2,7, 8 = (xl+ ~g) [+ X1ti2 (z; + @ + COl(xl sinX2cos%2+ % Gin % ~oi%)],
a, d, ~, g

I,2,7, 8
= +01 zl (z? + x;) sin2%2,

a,d, /,h

I,2,7, 8
= + ~lz (% +%) W%sin~2,

a, d, g, h

I,2,7, 8
b, c, e, f

= +017t2 (x; + x:) Gin 7C1cos7t2,

I,2>7, 8 .
b, c, e, g — q xl (z: + x;) COS2%2,

:’::’: = (xl+@ [+ X1X2 (x;+@ – @l (Xlsinx,cos X2 + ~2~i~ % 64 %)],
>>>

I,2F7, 8
b, C,f, g = o,

I,2,7, 8
b, o, f, h = — $+ X2 (zf + @ 6iv2xl,

I,2,7, 8
b, C,g,h

= +01 Xl(x;+ x:)Gin~ cos2t2,

I,2,7, 8
b, d, e, f = -1-01X2(x:+ xi)Ginxlsin2t2,

127,8;;eg = (x?+@ [– x,X2(%+x:)+ @l (– Xlsin%,COSX,+ X,Gin % SOfXJ],
,,>
I,2,7,8 =

— @l ~ (x;+ x;)sin2z2,.
b, d, e, h
I,z,7, 8
b, d, f,g

= + @lxi (x! + it?)Gina~,

1,2,7, 8
b, d, j, h ‘o’
I, 2,7, 8
b, d, g, h = + @%(%+%) Gin% Sinxz,

I,2,7, 8
c, d, e, f =“+ XiXg(z:+X8)*,
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I,2,7, 8 = — q%l (Z! + x;) 60[%1 Cos2$4,
c, d, e, g

I,2,7, 8 — @lxl (x; + @ &ofxlsinx2,
c,d, e,’h =

I,2,7, 8 = o.
c, d, g, h

Substituting thes. values inte the sabdeterminants
(17) and these again In (16), we obtain, by putting this
expressicm equal zero and by arranging the members, the
general buckling condition:

(%:+ %:)[Z. + (Q + fq 2, + p. + ~2) 4 + (@oyo + @2~2) G +

+@o@2z4+ (@oY2+@2wo)z6+~o~2’%+
+(CDo@2!P0+@o@2Y2) z7+(@oyow*+ @2yoy2)z8+@0 ‘2YOY2Z9+ (1/3)
+CD1(zlo+CDoz~~ +Qzlz+wozls.+ y2z14+@o~oz5 +@2y2&+

+@o@2z,7+ ooY2z18+@2yoz19 +yo~2Go+@o@2~oz21+
+ootD2Y2z22+f30Yow2zw+ @2~oy2z2,+@o@2~o~2z25)l ‘o. I

In %hzs equation$

(+z2c2e1 —xlGin$xlsin ‘Bj:)“+x2cos@c2Ginx1Gin(~-I)xl)],(p–%;)~,cos



l?.A.C.A. Technical Memorandum No. 904 17

.,

From this general buokling condition there can be
derived a number of spee$al cases aonaerning the bound-
ary conditions which., however? can only be solved with
a great amount of calculation. In the following we ehall
discuss and evaluate numerically two simple limiting
cases, namely, hingedand fixed longitudinal borders, re-
spectively. .

b) ~in~eil lon~itud nal borderq.- Eor hinged, but
rigid mountirig (w = Awi= O) of the longitudinal borders
TI=O andll=b/bl =@, we have To= Ta=Oand Jqo
= JTa=a, so that
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After dividing equation (18) by the factors @o and

Q2 the buckling condition becomes:

(Kla -1-KS2) [z~ + 4?1 21,] = o

or

- 1$~1$~(K12+ K22) sinh PK1 sin (3K2

1

~ @l [- K1 sinh p KI sin K2 sin (~-1) K2 ~ (19)

-1-K2 sin P K2 sinh KI sinh (P-1) Klj = O

in which the factor (K12 -1-K22) has %een left out, as

it cannot %ecome zero according to hypothesis.

For the limitation, that the ratio of the field
widths hl/1)2 is a real fraction, a further splitting of

the buckling condition (19) is possible. This limitation
is given l)y

%1 = r~, %2 = SC

in which r, s and r+s =U are positive whole numbers.
With

.!s1 . t !!~=Kf
r K1 ‘ r 2

the buckling condition (19) becomes

-K1K2(K12~K22) sinh u Kll sin u K21

+Q1(- K1 sinh u Klf sin r K21 sin s K2 1

1

+ 1$2 sin u ~2 sinh rKl! sinh s K1l)

or, since the left side contains the mutual
sinh Klt and sir. K2 *

r

[

sinb u K1’
sinh Klt sin K2t -KlK2(K12+ K22) — ——.——.—

sinh K1’

J=0

factors

sin u K21—————.
sin K21

(
sinh u Klt sin r K21

~ Q1 - KI
sin s K2t––––..–––r-. ———..———.————.-—.—. +

sinh K1 sin K21

sin u K2f sinh r K1l sinh S*K1 1
+ K2

)]
——.-————— -—————__—————..—— = o
sin Kat sinh K1l 1

(20)

(21)
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in.which the quotients in the large brackets are related
. . terms .- .-,.: .........—...,. .,.,....... ..... .,. .-

“The ’chuckling condition (21) is satisfied by putting
each factor on the left side equal zero, so that it dplits
up in two” tiuckling conditions, after dividing through
sinh Kll (since by hypothesis sinh Klt # O), which cor-

respond to two basically different buckling forms.

The buckling condition ~

sin K2t = O “(22)
.,..

is independent of o~ : its solutions are ‘

Ka = o, rn, 2rn .,.=

The solution ‘2 = O cancels %y hypothesis; to the remain-
ing solutions belong the buckling values

respectively.

These, however, are the same %uckling values for which the
nonstiffened plate with the ratio a in the n-direction
buckles with (r + s), 2(r A s)... and in ~-direction
with m half-waves. (See reference 2.)

Along the stiffener there is formed a nodal line, so
that the stiffener is twisted but suffers no hendin.g. The
dimensions of the stiffener therefore are,without in”f3u-
ence upon the buckling stresses, according to (22) because
of the neglect of its torsional stiffness~ These buckling
stresses are, in generals so great that, practically, they
occur very seldom. (Compare with this the followin exam-

fpies : longitudinal stiffener in the distance ‘bI = ~ b

and hi = ~ b, respectively). In most cases, plate and

stiffener buckle at the same time at small k values, which
are obtained from the buckling condition:
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formed by putting the last factor in equation (21) equal
to zero.

Not considering the higher buckling stresses, the
%uckling values grow according to (24) as the stiffness
VL = ‘Y increases (see following examples) and reach at

Y = m: i.e., for a knife-edge mounting cf the plate along
the stiffener, their maximum values. Since at Y = m

@l =m, the buckling condition for knife-edge mounting

along the stiffener is o%taincd from (24) ‘byplacing the
factor of @l equal to zero; the lmckling condition is
therefore :

sin r 1$~‘ sin s K21 sinh r K1* Sinh s K1l
+——————-.——————-_—_..— —-——— ..———————————— — =0 (25)

K2 sin u K21 K1 sinh u Kll

c) Examples:

1. Longitudinal stiffener spaced at bl =~hand——-- ———-.-...———-..——————— ..——— .. .
111 = * b, respectively.- Having one longitudinal stiff-

ener at bl = ~ (r = 1, s = 2), the ?mckling stresses

are, using (22) and (23), respectively,

In this$ the first terq (luckling ~orm: 3 half-waves in ‘k

direckion (see fi~. 3,1) contains the minimum values k =

9x4 = 36 with ~m- = ‘1; i.e., for the ratios a, = 1/3 at

m= l,ct= 2/3”at rn=2... For a longitudinal stiff-
ener at a distance 31 = 3/4, the corresponding buckling
values are

The buckling stresses according to (24) and (25) (buckling
forms, sce fig. 3,11), are calculated for the same values
of Y an d 8 and plotted against a in figure 4. The Se
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buckling stresses are, even fbr., Y = m, essentially smally
er, than the ones from (23) with..the minimum values k =
36,and 64, “-”respecti”vely~ so-ilia.tthe bu’cklin”g’-”condi-tidn
(22) has no practical signi$ieance. .. . ‘ .

The buckling-stress Cur-ves’f,rom (2?5)3 i.e., for Y =
e ‘ifigs, 4 and “5) ha~e no points of inflection, similar
to the” axes for Y = 6 = O ,’(nonstiffened plate), hut each

(has on’1.ya minim”um k = 10.’6
~ l--

for =
% i’

k = 8.55 for

I)l 1--
1) )‘z’

so tha:t the plate’ ‘buckles in ~-direction in the

sequence 1,2,3 ,*** half-=wav,es for increasing values of a.
Eowever, for finite values of Y some of the curves have
points of inflection; for, Y = 10, in the examples, the
curve even has a’ maximum and consequently, two minima.
From this fact f’ollows that the plate in the. examp”le
%1/% = 1/3 ‘and Y = 10 buckles for increasing values of

the ratio a, i.n the following sequence of the longi.tu~
. ~in’al waves m:

—._— . . . . . . __________ ———————————.———-——-
‘8 = ‘o ‘6 = 0.1—-————__________ _______

o

[

—7——-—..——--—-—.————.—.—.—— ———..—-

<a < 0.95 n = 1 0

I

<a < 1.00 m = 1
0095 c&<l.49 m=2 1.00 <a<l.26m= 2
1.49 <&c2.31 m=l 1.26 <a<2.64 m=l
2.31 <~<3.02 .m=4

etc.

Gorr,ospondin,g relations are Shomn in the example bl/b =

1/4 (fig. 5). For large values of a the curves in
their range of validity approach gradually the value of
the minimum with the smaller ordinate.

In table 2 the smallest %uckling values k are given
for the ratios a = 0.6, 1.0, 1.4, 1.8. For the accurate
calculation o“f the numerical values the tables of circular
and hyperbolic functions ~y Hayashi (Berlin, 1926) with
seven’ and more figures were used.

,..
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I@
———_

1/3

.—-.

1/4

.——

Y

-—_.

5

.——.

10

—.

5

-—.

I 10

-— —-.

6

0
0.s
0.2.—— .
0
0.1
0.2.————-
0
0.1
0.2-————.
0
0.s
0.2

TABLE 2
.—— ——— —_____ -— —__-.-- —-————-— -----

.—-— —-

0.6

9.849
9.’?96
9.735.-——— —.
.0.215
.0.201
.0.186-————
8.062
8.032”
‘7;999--————-
8.362
8.317
8.308

.—.

m.—.
1
“1
1-—
1
1
1—-
1
1
1.—-
1,
1
1

1.0-———— —-
8~959
8.413
7.861.—— ——

10.697
10.652
10;323.—= ——.—
7.015
6.808
6.539-—-=——--
8.266
8.i28
7.979

m

1
1

1
-—-

2
1
1“-—--
1
1
1-——-
1
1
1

,.,—--— —
194.—. ——-

7:852
7.009
6.293.————- —

100244
9.549
8.742

.————— —.
6 ;643
6.181
6.751.————— A-
8,096
7.786
7.368

T
_——-

m 1.8.— ——————
1 79756
1 6.808
1 ‘6.045.— ——————
2, 9.754

1

1 8.658
1 7.747—————.
‘1 6.997
1 6k441
1 5;909.— ——-———
2 8~182
1 7.659
1 7.104

-—-

m

1
+
1.—-
1
1
1-—-
1
1
1

2
1
1

2. Longitudinal stiffener in the middle of the_p&j~~-
If the sti.~fener lies in the middle of the plate (Ill =

$’r=s
= 1), the plate lnzckles according to equations

(22) and. (23) With one nodal line in the middle at the val-
ues

( )

2’
k =4 Z2+ m ● .* (26)

m 2;

the minimum values of which are k = 16 at the points
a= + (m=” l), a=l (m =2), etc. .

The corresponding buckling forms are antisymmetrical
to the center line ~ = 1 (fig. 6,1). The luckling con-
dition (24) changes into*
-------------------------------------------------------- .-————
*The buckling condition (27) is also present in the gener-
al solutions %y Lokshin (reference 13), in which, for the
special case of an arbitrary number of equal stiffeners
equally spaced, only the” symmetrical Wckling forms are
considered. While in our case - same as in certain cases
for plates with an odd numler of longitudinal or transver-
sal stiffeners - the antisymmetrical buckling cases can be
derived without difficulties from the symmetrical buckling
cases with respect to half the plate width or length, this
cannot be done at an even numler of stiffeners. But the
antisymmetrical buckling cases give in certain regions the
smallest buckling values, as will be shown later at exam-
ples of a plate with tvo longitudinal or transversal stiff-
eners.

.——-— .- ... ,, -,,..., ., ,,
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,,
in the Iirnitinqcase$, Y = ~, iti”become~ ““

,,
,’

,.

,.
tanh K1’ tan Ka o ..-——— - ——— =

RI K2
. (2,8)

,. Equation (28) agree s”with the buckling cmdition of a plate
with .the width %/2, one longitudinal b?rder of which is
hinged and the other fixed (reference 8), so that the cor-
responding buckling form is symmetrical to the center line
n=l (fig. 6,11 b).

Tim6shenko (reference 2) calculated th@ smallest %uck*
ling stresses for the plate with longitudinal stiffener in
the middle by means of the energy method.

Contrary to the example with one longitudinal stiff-
ener at a distance %1 = %/3 or bl = 3/4, in our case,

bl = ?)/2, the buckling fdrm with tho ’nodal line at the

stiffener is of importance. With increasing Y, at first
(2’7) gives the smallest buckling stresses., until at a Cf3r-
tain value of Y, which may be denoted as minimum stiff-
ness (ininy)~ the same -buc,kling values as with (26) are

obtiained. An increase of Y does not lead to a further
increase of the buckling ,~tresses, as the smallest Mck-
ling stresses are then obtained from the buckling condi-
tion (22), and (26), respectively, which is independent of
Y, and for which the plate buckles with one nodal line at
the stiffener. Hence the value ~inY is at least required

to get the maximum value of a plate with longitudinal stiff-
ener in the middle. The minimum stiffnesses have %een cal-
culated numerically by the author in a special paper (ref-
erence :19).

3. Dependence of the buckling_stresses on the posi--——..——— .—_..- —————. ——...—————- ——--—
tion of t~~ longitudinal stif~enor.- The dependence of the-—--- —--——.— --.——.———- ———-
buckling stresses k on the ratio lJJb , is s~own in -fig-

ur,e 7 for the square plate; for different values of V (at
“8 = 0], accordin,q to (19). Tor reasons of symmetry, ‘the
curves run symmetrical to the center line %1 = 0’;5. In the

case of the stiffener lying at the bord’er ~ = O (bl/b = O),

the buckling values for.every value Y, with any ,but fi-
nite maqnitude, are equal to those of the plat,e”hinge& at

IL.
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the four sides; thus, k = 4 (for one half-wave in longi-
tudinal direction), and, k = 6.25 (for two half-waves).
However, for ,y = % the border ‘fl= O is considered as
built in, as the buckling stresses in this case take the
values. k = 5.74 and k = 6.85, respectively, of a plate
fixed at one longitudinal border and hinged at the other
points. The buckling values increase for increasing bOr-
der distance ~1$ depending upon the magnitude of ‘Y.

For knife-edge mounting along,the stiffener (Y = ~) the
ctirve (for m = 1) reaches its maximum value k = 25 for
n/b = 0.5. To this value corresponds’s buckling form with

one nodal line at the middle stiffener. The corresponding
maximum value for m = 2 is k = 16.

Both curves intersect each other at the point bl./b =

0.16, 11so that for border distances -.— < 0.16, we obtain

the smallest buckling stresses for one-longitudinal wave,

‘and for horder ‘distances ~1~ s 0.16 for two longitudinal

waves. The full line (see fig. 7) consisting of these two
curves, which contains the smallest buckling values for
Y =Ca, represents at the same time the upper limit for
all buckling stresses occurrinq in practical cases.

For values Y < Ymin (for instana’e, y = 1,3,5 in

fig. 7) plate and stiffener %uckle in the entire region
with one longitudinal wave. With the value of the minirnun
stiffness, that is, in this example, Ymin = 7.23, accord-

ing to table 2 of reference 19, the maximum value k = 16
is reached at the point bl/b = 0.5 with m = 1, For val-
ues y > Ymin in a mean region, the magnitude of which
depends upon Y, the buckling values for m = 2 longitu-
dinal waves are determining.

In the neighborhood of the center of the plate the or-
dinates of the curve for Y = ymin Jre practically equal to
those of the lj.miijj.ngcurve for y = m (m =“2). In bl/b =
0.4, the difference only amounts to shout 2.5 percent.
For a stiffener near the middle of the plate the same is
true , namely, that an increase of the stiffness over the
value Ymin does not have as a result an increase of the

buckling stresses.
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??lo =Jqa=To=Ta=~
,.. .. . .,., ,.,, .

,,,.
and at the same time

... .,

Dividing the general buckling condition (18) through
the factors O., 02, ~o, $2 the members containing these

factors in the denominator are, with the values above,
equal to zero and the buckling condition ,becomes

(lCl’ + Ka’) (Zg +- (DI z,,) = o
or

-F-2K1 K22[sinh(13_l) KI cos(f3-1) ~2i-sinh~l Cos K’ ((29)

- K2 sin 13K2 sinh K1 sinh(13-l)KI]~=0 J
In case the stiffener lies in the middle (i3=2)*

the le~t--hand sj.de of the buckling condi.ti.on may”be reduced

to the product of two factors:

{ ~2 }“
sinh K1 cos K2 - Itl cosh KI sin K2 X

1

{
t (30)X K1K2 (K12+~2)(Kl sinh KI cos K2+K2cosh KI sin Ka){/

+@l [ttl~(l-cosh ‘1 cos Ka)+ V2 sinh K1 sin K’]
}

=0
I

J

so that two buckling conditions are formed which are inde-
pendent of each other.
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1. The buckling “condition which is formed by put-
ting the first factor in (3o) equal to” ,zero:

K2 sinh K1 cos ~ - 1$1 cosh K1 sin Ka = O (31)

is independent of @l, and agrees with the buckling
condition for a plate of the width b/2, whose one lon-
gitudinal border is hinged, the other one being fixed
(reference 8). The corresponding %ucklin~ form con-
tains therefore a nodal line at the stiffener. The nod-
al line is identical with hinged mounting of the plate
at the same point (antisyxnrimtz-ical l)uckling with respect
to the axis n= 1).

2. By placing the second factor i.n (30) equal to
zero, the buckling condition

(32)

is formed, which gives the buckling stresses of plate
and stiffener (symmetrical lmckling with respect to the
axis n = 1). To the limiting case @l.= O corresponds
the nonstiffened plate fixed at the borders O = O and
T 2;= the corresponding buckling condition lecomes:

Kz sinh KI cos K2 ~ K2 cosh K1 sin K.s= O (33)

from equation (32), reference. 8.

In figure 8 the’lmckling values k are plotted
against the ratio a. A comparison with the correspond-
ing’ bucklinq curves for hinged longitudinal %orders shows
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(reference 14) that the antisymmetrical buckling form
\ with built-in borders is already determining for consid-

erably smaller values of y than for hinged longitudinal
borders (reference 19).

Plate with two longitudinal stiffeners:4b _ —————-———

a) General %uckling condition.- The investigation--—--— —.—--.—. ———._————
of.the rectangular plate with two longitudinal stiffeners
(r = 3) is limited to the case of all four borders hinged.

We have

To =T3=0, YO=Y3=CU

and therefore,
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L
I

2

3

4

“5

6

7

8

,9

f

I
,10

r

;1I

1

r,12

(II”)

— .

(10”)

- so that the boundary conditions (8’) to ‘(11s) simplify
to

Yl=o, (9”) Y3=0, (II”)
y;’= c), (8”) y:=o (10”)

The transitional condi%lons between the fields 1 and 2
are the same as for the plate with one stiffener (table
l); corresponding equations are obtained for stiffener 2.
The 4 boundary and 2x4 transitional conditions form,
with the solutions:

WI = Ylsinv&, Yl=Al@ifixl~+BIQO~~q+ Clsinzzq+D;cosxzq
2 2 2 2
s 3 8 3 : 3 3

the d.efiominator determinant, shown in table 3, from
which the buckling condition is obtained by putting it
equal to zero.

!l!hesolution of the determinant is briefly given in
the foZlowing: After eliminating the lines 1 and 2, the
determinant beoomes

(34)

1*2The subdetermtnant b d becomes, after elimination of
s

the lines 11 and 12,
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~. i k

Ic:
,.. . .—.-. .. .

I

I
— sin%,

+ L:sin %, +“‘+%: Cos %, I

+ xlsinxi I— X* Cos%,

bl + b.—silt - %, –cm * x,
6 1

bl+ b,
‘X1 ‘t” bl % –x,cos+x,l+x,.skl~x,

-~.cos~-p —x, +ti.six+%,

b I bsin — x,b, Cos— x,bl

Since the lines 11 and 12 are independent of the lines
3 to 6, the four 8-line subdetermi~ants in (35) with
r = i,k and s = t,m (r+ 8) may be written, after
eliminating first the lines 3 and 4, as

~he nine subdetermtnaats oeazrzing in.this equation be-
come’, after elim$nathg tho lanes 5 and 6,
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Substituting these terms in the subdeterminant (36), we
obtain, after arranging tb.e equation:

The ce.lculation of the sabdeterminants of fourth order
on the right-hand side gives, for the various values of
r and s, the following equat ions:

r=i, S=l:

3,4*596— — %2(%; + x:)Qsof *
bl + b%

a,c, e,f —
xl COST X21

1

3, 4, 5, 6
a, c, f, h [

= (x; +X:) –~x2(x; +x:)+

+ @2 (X2 Gin
bl + b,!&p xl Qf ~ bl + b, bl + b,

%—%sin~ X2Cos—
1 1 1 )1bl ‘2 ‘

3>4, 5>6 bl + ba bl + b2
—+sin T= — Xl (~; + @ @2~”f b X21

a,. c, e, f . 1 1
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3, 4, 5. 6!
u, c, t, gl=o’

3,4,516_ bl + bi
—x2(x~+@@2G3inzr ~,

a, c, ~, h L

, , ,.,,,,,, 1. ■--
..
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placing this determinant equal to zero.

b) &Q stiffeners being symmetrical_lQ_~h~_~~Qi~—-—-- —— 4..————.— -—
line =n b~~&. with eciual dimensions.- For two stiffen”---.——
ers %eing symmetrical to the middle ’11=?)/2bl with equal

cross sections and moments of inertia, @l %ecomes

so that the left-hand side of. the buckling condition (38)
can be simplified with these values and can be written as
a product of two factors. With b/bl = ~, the buckling
condition bebomes

‘{-
K1K2 (q 2 + ICa2) sinh PK1 sin BK2

+ @l [- K1 sinh BK1

1

sin K~ sin (B - 1) ~~+

-1-K= sin ~ K2 sinh K1 sinh (B - 1) Kl]}
.

x
i
KIK2 (K12 ~ Ka2) cosh i3Kl COS 13K2

~ @l [Kl cosh B KI sin Ka cos(p - l)Ka -

u Ka COS P K2
}

sinh Kl cosh(p - 1) Kl] = O

Since each factor, placed equal to zero, satisfies the
equation, we get

1.- .- KIKa (K12 ~ K22) sinh PK1 sin 13K2

-!-@l”[- KI sinh P Kl sin K2 sin (~-1) K2~

~ Ka sin @ K2 sinh K~ sinh (p-l) K1 j= O
1

This buckling condition agrees with one for a plate of
width b/2, hinged at the longitudinal borders, which
stiffened ‘by a longitudinal stiffener at a distance I’1
(See buckling condition (19), p. 14. ) At the point ‘fl

(39)

*

(40)

the
is
= 1.
=

6/2 , therefore, the boundary ~onditions for hinged mount-
ing are satisfied. Thus the %uckling form for our case
with two stiffeners in the middle of the plate contains a
nodal line. The buckling condition (40) therefore gives
the buckling stresses for buckling antisymmetrical to the
center line l-l= $/2.
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2. !I!hebuckling condition:
.

K1K2 (K12 -+ IC22) cosh ~ KI COS @ K2 1

33

(41)

contains the buckling stresses for buckling symmetrical
to the center line ‘II= $/2.

c) l!xamples:——.— ———

1. Two longitudinal stiffeners aj_9qQQA&&Q2QQS.-
13’or two longitudinal stiffeners with equal dimensions and

equal distances (bl = b2 = b3 = b/3) the buckliwz Condi-

tions (40) and (41), after being split up i,nto factors,

.ohange into

[

sinh K1
.

+ 01 .——— ——..————.-—— - . ‘l!?-?.a–____—— ——

( )1
=0

‘1 3-I-4sinh2 ~2A
) ‘2 (’-4 ‘in2 W

(42 )

“K ~.!?

r
cosh -A COS —— - (Kla -?-K22) ~

2 2. .-

(( sinh K1 sin K2 \.
-1-01 —-——- .—-- ———— - ————————————— =

) ))1

(43)

4 cosh2 :2a
~1

-3 (4 Coa= +-3
K2 \

or,
#

if again equating each factor to zero, whereby the fact-

ors sinh -$# and cosh ~ are omitted, sin’ce they can-

not approach zero, according to assumption:

‘2
sin -- = O2

(44)

1 (anti-

“: “(&Z2~K2a) -k ““

1“

.“. sym--
, met.-

.
‘+@l

sinh KI s,inK2 rical
—— ————— —- . buck-

.,.,
K1 (’

3-t-4sinh2
%) ~T=-=~% = Q ‘“) 1’”)

1 4. .-
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(46]”
?2:-?0s–- =
2°

-( K,%tt22) -1- ‘

+ q

[

sinh K1 sin Ka--—-—.-.-——- —.——— . —..—————— —

(
4 cosh2 :22

) (.
‘2

~1 -3 ‘2 4 COS2 –2– -3
)

To the solutions of (44)

~2—-
2

= IT, ,2T7, 31T ● ,**

=0 (47)

.

(:%:

rical
l)uck-
ling)

which are indepe~den~ of ~1 , correspond the antis ymme%ri -
cal buckling forin~ with nodal lines at the longitudinal
stiffeners. The buckling stresses corresponding to the
first value ‘2 = 2Tf are

The buckling form has 6 half-waves in ?l-direction (fi”g. 9,
Is). To the following solutions of Ka correspond %uck-
lin,g forms with multiples of 6 half-waves. Those values
are hi,?her buckling stresses which cannot 3e taken into
account for this calculation.

TO the solutions of (~~)

~a=~ 3-R 5Tr——
2 2’ 2—’ 7“”””

correspond the symmetrical %uc~<ling forms with nodal lines
at the longitudinal stiffeners. The buckling stresses of
the first value are

k= 9 (;!2 + J!!-~2 Minima: ~
3a/ =36 for@=l

The buckling form has 3 half-waves in q-direction (fig. 9,
IIa). The following solutions of K2 also give higher
buckling stresses, since to them corros.p.ond buckling forms
with multiyles of 3 half-waves. The 6quations (45) and
(47) give the lnzcklinq stresses for the buckling forms sym-
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metrical, and antj.symmetrical to the axis r
. -. whichthe plate buckleij with the stiffeners

and IIb).

In figure lo”the.ljucklinjg ~tresses for

35904

= p/2, at
(figo 9, Ib

Y = 5 and 10
are plotted against the ratio “CL. For small ratiOS” (a c
: 0.4) the buckling condition (46) gives the smallest
buckling stresses, for great ra~ios the buckling values
have to be calculated from (47). Besides that, for small
values of y (in fig. 10, for Y = 5) at ratios a = 0.4
to 0.7 the antisymmetrical buckling is calculated from (45).

Timoshenko calculated approximate values for this case
using the energy method and put them together in a table
(reference 20), but the table is set up only for the sym-
metrical buckling cases according to (46) and (47), not for
the antisymmetrical Wckling form from (45). Several nu-
merical values in the table are therefore too great. For a
comparison in figure 10, the” curves for y = 5 and Y =
10, respectively, and 8 = 0.1, which correspond to Timo-
shenko !S values, are’ shown as dotted lines. The values of
the approximate solution are slightly greater than the ex~
act values from (47); however, with increasing ratio as
the differences hecor~e smaller. The solutions by Lokshin
(reference 13) are also incomplete as they only consider
symmetrical buckling.

2. Stiffeners at small distances sYmmQ3x&gQ~_&Q_j~f2
center line.- With welded structures the case. may occur————— ______
where one longitudinal stiffener is split up in two, each
half being on a different side of the plate but %oth at a
small distance from each other (fig. 11) , in order to avoid
lapping of the welding seams. The buckling stresses can be
calculated from (40) and (41) if both halves of the stiff-
ener are symmetrical to the middle. Since ba ,is small
against b by hypothesis, the buckling stresses for a,nfii-
symmetrical buckling (fig. 11,1) increase as “D~ increases;
for, in the limiting cases ba = O, the plate buckles like
the nonstiff.ened plate with a nodal l.inp.,,whereas at an ec-
centricity ba. also the stiffeners are bent and thcrofore
the resistance aqaingt Inzcklin.gais greater.., The. buckling
stresses therefore remain on the safe side. i.f tho.se,.of the
limiting case ha = O are used. However, the buckling
stresses for symmetrical huclkli.ng (fig- 11,11) decrease as
ba increases. For the exampze of the, plate with the ratio
a= 1, and the stiffener With Y =2.5 (6 =0), the buck-
ling Yalues are, from (41)
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-~.:-t-;~+-:::;fi:=ti%

The differences between the k values are small, so that
if no qreater eccentricities are in
values of the limiting case ba = O

III. l?LATll‘WITH TRANSVERSAL

question, the lmckling
can be used.

ST13’IU3NERS

1. General pri:~cipl~&.- The rectanguln,r plate with
transversal stiffeners at the points x = al, X = al ~

.a~ ..* (fig. 12) consists of r plate fields with the ra-

tios

(c+= ratio of the whole plate).

With the notations

the deflections w of the center cross section of each
plate field i, on account of the compression stresses at
the transversal borders ~ = o and g = a, satisfy the
differential equation (2), in which the value CPl is to

be re~l.aced 3Y p, ac~ording to the notations mentioned
above.

Assuming hinged (w = dw = O) longitudinal horders
n = Cl and ‘n=l, the differential equation (2) in each
field i is satisfied by

TVi ‘xi(t) sin ni, m T (ni = 1,2$3 . ..) (48)

3Y which the bending area in ‘&direction is assumed to
have sine shape. The function Xi, only dependent on ~,

is obtained from the common differential equation

~IV
i

~ (llz~ - 2ni2 TT2) ‘iii ~ ni4 n4 ‘i = 0 (49)
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the general solution of whioh is
F,. . .,, ... ,.>.,.., ., .,,,

Xi=Ai sin ~iAl+Bi cos fi~l+Ci sin ~i~a+~i- cos ~ih= (50)

Since for every field according to (48] there exists a
sine-shaped (in ~-dlrecti.on} bending area, the number of
half-waves in n-direction must be the same in all fields
(ni = n) because of the steady connection of two adjoin-
ing fields. Of all values n the minimum values of the
buckling stresses correspond to n = 1; therefore, the
following general de~ia~ions are calculated with n = 1.
With the aid of ~he four boundary conditions at the borders

t t and the

gene~u-a~~uat~!~~- 1 )

4(r - 1) transitional condi-
ti~ns at tbe stiffener we can set up 4r homo-.,“ ., from which the buckling condition, and
from t’hat the lmcl:ling stresses ok =koe
lated.

can be calcu-

2. Sciundar-z transitional coridztlons.- At the hor-_.z:Wl_. _L_:.__________.9--:___--—-.—__...
tiers t = o arid ~=a, rigid and hinged mounting i“sas-
sumed; therefore, for = OE

,T?l =0 (51)

4W1 = o (!52]
and for “[=a

‘r = o (53)

Awr = O (54)
,.

At each stiffener i, iSeo S for f.= al+ a2~.Qo0 ~ ~
ai[i~l to (r .-l)], the follotvlng ”transitional con-

ditions must he satisfied:

1. The geometrical conditions for steadiness require

Ivi = Tvi+.’$ (55)

(56)
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2. Neglecting the torsional stiffness of the stiffen-
ers, the “oending moments m~ of adjoining plate fields i

and i ~ 1 at the stiffener i are equal, i.e.

Since on account of the steady tonne-ction the curvatures in
m-direction at the stiffener must be equal, i.eo,

equation (57a) changes into

(57%)

(57)

3. Considering the plate fields i and i-t-las

cut off along the stiffener i, the transversal loading
of the stiffener must be put equal to the difference of
the reaction ~orces of the two plate fields, at whic~ the
deflections of the stiffener Iiust he assuned to be equal
to the deflections i or i-l-l at the point t =(X1+

a~~ ...~~i. Denoting the moment of inertia of the stiff-

ener about the ~-axis by Ji, me have the equation :

. .

EJ.
or with ‘=Yi~: and, considering (56) and. (5’7%)

~ a~vri ~3W i ~3Wi~~——-.
i

———— .
a~z =

——— —...—
ag= a~3

(58a)

(58)

.. After substituting the solutions

in the boundary and transitional conditions, we obtain the
following equations, only dependent on the variable ~ ,
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for determining the constants in the functiohs xi :
,> ... ..,.. .

‘% : *ox, }
for t 0- “--”-”=

Xr=o
X’l=O ) for ,5 =a
r

39

(51’)
(52 f)

(p?~)

(54!)

(55 ‘)

(56’)

(57’)

(58t)

trans-
versal stiffener (r = 2) eight homogeneous equations, ac-
cording to (51!) to (58!), arise from the solutions of
fields 1 and 2.

\
the coefficients of which are given in table 4. This de-
nominator determj.nant iS solved as for a longitudinal

stiffener; therefore we omit the whole process of solution

for table 4. The result of the solution gives the buck-
ling condition for the uniformly compressed plate with one
transversal stiffener: ,. .’

i:
(59)

+ A2 sin a Aa sin alAl sin ti2Xl) =’0‘J
,,.

The buckling conditions for infinite stiffness Y,
i.e., for knife-edge mounting at the stiffener, result
from (59) by placi,ng the factor Y equal,to O. !lhe buck-
ling”condition is

I
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- Al sin a Al sin CLIAz sin asA2 ~
(60)

~ Aa sin cc Xa sin al~l sin ~Xl = O

Buckling conditions (59) and (60) are, regardless of
the position of the stiffener and the magnitude of the
stiffness Y, satisfied, if at the same time

sin a Al = O, sin a A2 = O

or

~ Al =mln

a A2 =m2-fr

The corresponding ratios
tained from

1=
a

They are

6 =~ml ma,
————

(ml = 0,1,2,3 .-.)

(m2 = 0,1,2,3 ...)

a and buckling stresses are ,0%-

~L = _ka--
mln man

(ma + ma)a
G= .—..—.—.

ml mz

The case ml or mz equal to ~ero cancels, as we

would get ;=0 and G = co. With ml =m2 =1,2,3 ...
z becomes

E= 1,2,3 ... and E=4

This case also has to be excluded since %y hypothesis
k~4. The values k = 4 for the ratios a = 1,2,3. .s’0
are the buckling values of the hinged, nonstiffened plate
where t~he ?mckling form consists of square buckles. It is
evident that with one transversal stiffener present, the
buckling values, on account of the greater resistance, gen-
erally must lo greater than the ones of the nonstiffened
plate. Only for the special case, where the stiffener co-
incides v~ith a nodal line of the buckling form of the non-
stiffened plate, the solution ml = m2 with k = 4 is

valid also for the stiffened plate.

!l?heother values =, ~ yith ml, m2 = 1,2,3 ...’ (m, +

m2) have a simple significance for the nonstiffened plate.
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Table 4

g h.d e

D1 A,

f

c, 1. Q

1’ i I
(51’) I

I

I ,.
(52’)2

(55’)3

ii

iis
1?
●

z..

(57’)4
—

5
—

6

—

7

i

(56’)

(58’) —ajcos Qa, +~sma12,

—

sina~ cos “a&(53’)

(54’)
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Plotting the Imckling values k as functions of the ratio
a, the points ~, ~ agree with the coordinates of the
intersections of the ?mckling curves k = k(a) for the
nonstiffened plate which luckles in longitudinal direction
with ml and ma half-waves, as is olvious from equation

The result may be summed up in the following sentence:
At the points of intersection of the buckling curves for
the nonstiffened plate for ml and ma ‘half-waves in

longitudinal direction (ml, ma = 1,2,3 ●**; ml+ m2)*

the buckling condition of the plate, stiffened ly one trans--
versal stiffener at any place and with any stiffness y

(also with Y = m) is at the same time satisfied.

For the restriction, ratio aJ% “oeing a real frac-

tion, we can place

in which r, s and u=r~s are positive integers.

the “oucklinq condition (59) becomes

Each term on the left-hand side contains the common factors

sin ~lt and sin X21, so that (61) may %e split up into

sin AI1 =0, sin h2t =0 (62)

and
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(Ala - ?@ A~h~
sin u~’” sin u Ad—— - ...——
“sin Alt sin Aa’.“ ..-,–-,.. ,-----... .. ,,-.,.

+Y~4
.[

sin u-h ‘ sin r ~2’ sin s Ad ~
- )i~-— —+-–-—sin ~2f

-—-——-—

\

(63)
sin hi

,.,
sin-u A;’ sin r Alt sin s Xlf

+ Aa -—-—— 3- —- —----— --------

~ .J

= o
sin Aa sin A It

The quotients in the last equation are related terms.

The buckling conditions (62)’ which are independent of
Y, are satisfied for Al’ = ~2t =17, 21T, 31T,00S mm ● BO

Thy corresponding %uckling values are, both for Al’ and
*

Since c .?=%
—s—‘ the fields 1 and 2 buckle like plates

hinged at the four borders with mr and ms half-waves
in longitudinal directfon, so that the entire plate buck-
les with m(r ~ s) half-waves and has a nodal line at the
stiffener. According to luckling condition (63) plat~ and
stiffener buckle at the same time.

Transversal stiffener at a distance al = a/3
(al =1:/4).

a) Buckling stres~es Lincluding the higher ones) for-.—-_—_ ___.___b_- ___ -
the square relate——___ - For the example of the square plate—————____ .
mith one transversal Stiffener at one-third of the length
a t~e buckling stresses from (62) and (63) are plotted
against.’Y in figure 13. In the buckling conditions we
have to place

.,’,

The poin.ts’of intersection of the curves( 63) with
the 1$-axis are at th”e same time the buckling stresses of
the nonstiffened plate (y = O); the corresponding lmck-
ling values are: . ..
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k=4 (%ucklin~ fo~rn: 1 ~alf-wave in longitudinal
direction)

k= 6.25 “(%ucklinq, form: 2 halffiwa’ves in longitudinal
direction) ‘..

k = 18.06 (buckling form: 4 half-waves in longitudinal
., direction)

,,

With increasing Y, the lmckling stress k = 4 (~ =

O) goes up first and approaches then asymptotically the
value k = 5~’795, to which corresponds accordingly a
stiffener with infin,ite stiffness. With k = 5.795, we
have reached the greatest, in practical. cases occurring,
buckling value: the curves above contain higher buckling

stresses. To the values 5.V95 c k< 6*5 correspond neg-

ative values V. These %uckling stresses are without phys-

ical significance since there are only positive ratios 3e-

tween bending stiffnesses of the stiffener and plate.

(64) lve o%tain the further solutions:

From

(
2

Al’= A2’=IT, ‘2?T*.. with k = )3m-1-~1~ (m=l,2.. .)

The minimum value occurs for m = 1 and is k = l.QQ =
9

11,11 .*.. At this value” the plate buckles with 3 half-
Waves in ~-direction tvith a node at the stiffener.

~) Bucklinp stresses demending oq_JJ&_YE_~SQ__._aJ- In

figure 14 the buckling values are plotted as functions of
al for the case of one transversal stiffener at a/3.

buckling conditions (62) and (63) are for this case

The ‘oucklinq values

The

(64)

(65)

(’
2

k=~;~–~
3m )

(m =1,2 . ..)
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from (64), which are independent of Y, are those of the
nonstiffened ,plate-with 3,..6, ‘9.....half~waves in longi-
tudinal direction, so that a nodal line occurs at the
stiffener.

The solutions of the equation (65) give curves that
are calculated for ‘Y = 0.5, 1.0, and and plotted in
figure 14. These curves coming from in~inity with a = O
have a wave-shaped course and approach - not mentioning
those for higher buckling stresses - with increasing ratio
a asymptotically the minimum value of the %uckling stress-
es k = 4.

For the ratios a = 3, 6,’”9 ... and those in the imme-
diate nei.gh%orhood, the, buckling condition (64) gives the
smallest “ouckling stresses.

The initial and end points of the sections, within
which according to (64) lie the smaller buckling values,
are” qiven by the intersections of the curves for (64) with
those for (65), the magnitude of these sections being de-
pendent on the magnitude of the stiffness Y. The sections
are smallest for Y, = O; tho corresponding ratios a then
lie within the limits

~(3m - l)3mCa< ~3m (3m -1-1)

(For m = 1, CL is 2.450 e a < 3.464.) The sections become
larger with increasing Y and reach their maxima for y =
CO. (For m = 1, we got 2,12 < a < 3,68.)

Buckling condition (65) is satisfied independently of
Y, if at the same time

4 COS2 ;A1--l = O and 4 cos2~ A2 - 1 = O

or

Cos :,Al=:$ and Cos ;,A2.=* $

so that

These. values are reached at the intersections of the buck-
liq~ curves for ml and “ma half-wa:es of the nonstiff-

ened plate
(

————
~ =~til.m2, I = &W!!2al_

) with ml, m2 =

1, 2, 4, 5, 7, 8 ... (ml+ ma). ‘1 ‘2
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AS Figure 14 shows,, the ,curves (65 ), depending on ~,
touch each other. at th,et,in,te,rsection,sof the ‘Duckling
curves for 1 and 2S 2 and 4, 4 and 5, etc..,half-waves of
the nonstiffened plate, so that in these points the 3uck-
ling values k are equal to those of the nonst’iffened
plate for any value of the stiffness y.

From table 5 the exact luckling values k “for the ra-
tios al/a = l/3 and al/a = 1/4 may be taken,

—.—..——-

aJa

1/3

——.——.

1/4

.—. —-

Table 5———_.=______ ——..————————._.—.——__—————-———~——.————..——————

7 a...——————..—————.-.——-.
O*4 0.6 i 1.0-—.-——-———.———————

t

_A_—___ __——————-
K“ 11;265 8.703 5.694
10 13.768 10i085

4

5:748

15 ~5.840 10.741 5.764—————.——————————————.—— ———-.————-
5 10.287 ‘7,474 5*317

10 11.90’7 8.655 5.402
15 13.210 9C2p6 i

————————————————————— l_-EE.-

.———————-
1*4

.—— ——--— —.

4:519
4.519
4.519.————— ——-
4;515
4.516
4.516

—————-

———.—————
1.8————..——4
4:317
4.326
4; 329

4:458
4.472
4.477

2. Transversal stiffener in the middle of the~l@ti.-------------------------------------------------------
l?or a transversal stiffener in the middle of the plate

(al = a. = ~/2) the buckling conditions (62) and (63)

than.qe into

“=(2%+%$‘m=’32y30D0)
are those of the nonstiffcned plate with one nodal line in
the middle. The corresponding buckling form therefore is
anti symmetrical to the center line ~ = a/2. Buckling con-
dition (67) which is also contained in Lokshinrs solutions
(reference 13) gives the Imcklinq values for the buckling
form which is symmetrical to the center line ~ = a/2. The
required minimum stiffnesses were calculated by Timoshenko
(reference 2 ) with the energy method.

. . .
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4. PULte wit h two transvers al stiffeners

a) genera ~.- ‘~or thz plate
with two transversal stiffener= the 12 equations in table
6.are daveloped..from.the. deflect@ns., w of,t.hq Plate
field 1 to 3 with the atd of the boundary and transi=
tional conditions (51~) to (58s). l!he solution of the
denominator determinant gl~es the following general
buckling. condition of the hinged rectangular plate with
two transversal stiffeners:

“Z)2sin a 11 sin a ;.2i.;i.:(;.;- /.2

P) f. [i,sin a 21 sin al ;.2 sin (a2 + %3) J2+n41.~7.2(j.:— q (/1 .1 .

— /.2sm a ;.2sin al ;.lsin (a2 + X3) 21]

+ 72 [;.lsin a.~.lsin (zl -i a2) ;.zsina3;.2 ,.
– ).2sina 12sin(al+ a2)jlcsina3ii]}

L 78 ~1 ~z {~; sin a Z1 sin al 22. sin a2 >2 sina3A1. , (68)
+ l;sin a22 sin al ;.1sin a2 & sin ~ Z1

+ 21& [sin al ;q sin q 1.2(sin al 22 sin a3 11 —

— sin (al + a2) 22sin(a2+ a3) 71)
+ sin al 1.2sin a3 ?I (sin al j.1sin a3 ?.2—

— sin (al + a2) ;I sin(a2+ a3)7.2)]}= O.

b) Two transversal stif~en r metr al jo the
___~~& with equ%s;i~=sion~~- The lnxck-center line

ling condition (68), with stiffeners placed symmetric-
ally

Yl= 72=7 and al=a=, al=aa

)1 I+yn4(—?q cos~?.lsin al~2cus+~2+~2cos~~2sina1)~cos+-~1’=0.

From this we obtain two different buckling conditions
by placing each of the tw~ factors equal to %ero.

i. The first “buckling cond~tion
‘1 sin~).2

1 (70)
(1-~)~l~tifl~ 1

+y#(–~sin ~21sin%”12sin~&+12 Sin~~2sinalksin~ 4)=0 [

agrees with the one for the plate with one transversa~
stiffener ,at the point ~ = al (see equation (59))
where the border of the plate ~ = u in (59] corresponds
to the center of the plate E =-a/2 in (70). Since

%uckling condition (59) is based on hinged plate borders,
We bu,ckling,form from (70) uontains one nodal lime in
the center of the plate, so that the ant$symmetrical
buckling forms correspond to buckling condition (70).

2. The secondf actor in (69) gives the buckling
condition
(if– 1;)2122cos~ ~ cos~ 12

I (71)
+y.+(—~cos~l~sina122cos~2z+lzCos~~.2Sina111Cos~%1)=0 I

with th6 buckli”hg stresses for buckling Yorms symmetri-
cal to the center line ~ = a/2.
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la “ ‘c ““d
.

e If
G1. Al B1 c1 D1 A, B*

(51’) I r
— ,.—._..--------- - ——
(52’) a: ~:
— —.—

(55’) sinalal cosal& sinal 23 Ws al a, — sin al Al — cos al Al

(57’) — a?sin a, A — A:cos % 4 —% ‘in al 2* — ~: Cosal a% +~sinal~ + A~,COSal~

,-

(56’) ~ cos al.4 — Al sin q Al Az cos al h — A% sin al Az —~cosc41& + Al sin al ~
— . — .

(58’)
A; cos al Al — A: sin al 21 A;ax al& —A:sinal&. — A:cos al lq

+Y13T4sin U1h -l-,YlW4cos al 4 +71 n’ sin% A + yln’cosalA
+ 1: sin al 11

(55’) sin (al + az) Al cos (al + a,) Al
1- -––

— l? sin (al+ az) Al — 1; cos (al+ aJ iq;74– _.. ——
(56’) 21cos (al + uZjal —&sin (al + aJ ),

._ — —

k?cos (al + a2) & — A; sin (al+ a2))1
(58’)

+ hn4sin (al + ai) A +Yi Z4CoS(“l +@ A
—

(53’)
. ——— ..— — . —

(54’)

Condition (7o) for afti:~etrica~ buckling is
satisfied for any value ,

sin~Al=sin~l%=O
or

~h=~a2=%2n,Jn...

To these values are coordinated the poitits with the
~@K%ratios Z = and the buckling values

E=
(ml+m~)

for ml~ma = 2 ,4,6 .*. (mi#m ~; the ~alues
~ ma

with ml = m= drop out for the same reason as in the

corresponding case of one transversal stiffener. Buek-

lin.g cond.itaon (71) for symmetrical buckling, independ-
ent of position and magnitude of the stiffener, is sat-
isfted for

COS:11=COS;”12=0
or

;a1=:a2=:,$,y . ...

To this correspond the points E, ~ with .ml,ma =
1, 3, 5 .. (ml#ma).

c) ~xamvleq.~ For two equally large stiffeners at
equal distances (al = aa = a/3) the buckling condi-

tions (70) and (71) become, after further splitting up;

sin~ll=sin~lz= O, (72)

(1;–
(@ ~~& 4cOSz-;-al— I)(

4cos2;@r

+y~4[–~1(4cos2;11 –1) sin~l,+!2(4cos2~22-l) sin~,nj=o I ‘“)

—— lm-,lE -11-mImlmllll Ilmmllll -ml-Ill 11111IIIn mm Ill 11 I II II I I I m I II 111111111111 I
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h’ i i ~ ‘“k” ‘““ )))

c%” I ~a .-/3. 13= c, “ 1%

‘“+ ‘: ,“ ““ “

.
——. ..........——.. — ..-—...,..—.—._——--.--..=--..— .-.-—..—. ..—.

1
,.

——.— —.——. _______ ..-.-— - 3----.-........———
— Sinml2* - aasal&

-— .-—, — —z- .— ——..—.
+ ~:sina,A* + G Cosal2,

.— ,—-— —__ -—______ .-——.-—......-— .
— AZCosa,a, ~ a,‘sillala,

—.—-...—--—- .......-______........—. .... ._.___ .- .-— _—-.—

— 1;COsa,a, -t4 SinalA,
—— ____ ..__ -..

~in(a,,,+a,)2, cOs(al+ a,)aa — sin(a,+ a,)Al

“’ “~

— cos(a,+ a,)Al— sin(a,+ a,)&— cc>s(al+-a,)Az
—’ ..._—..—.
- ~sin(~,~ fx,)~,— ~~cOs(a,+ a,)l,+ L;sin(al + a,)Al + Atcos (al + a,) A, +* sin (al +aJAi + Ii m (al-l-a,)A
——

Itcos(al + ai) AS — Aasin (a, + a,)A% — Al cos (al+ a,) Al + Alsin (al +a,) Al —2,cos(a1 +aJ 19+ Assin(al +ai) A8,
—.. .— .—-. ..—:

~ cos (a, + a,) A, —N sin (al + a,) A,
— Jfcos (al +a,) ?V + Afsin (al i-a,) 11+y,n4sin(ai + &8)La +y,n4cos(a1+aJ A,

—A!jcos (a, +ai) La + ~sin (al +a,) h

—— .—...— — —.. - ..—.,. . . . — ...-.. — ._. _ - .——.

sin a-21 cos a Al sin a A,

“7

Cos a as
—.—--.—- ...-..—-._ —_..__... ___ .. . ———

A! sin a Al Al cos a Al ~sin a As x; C(H a a,

for antisymmetrical buckling, and
cm .;. 21 = Cos -;. 12 = (;, (74)

( )((1; –2:)1,22 @sa&l-j 4cos’; &-3
)

[( ) ) 3,1

(75)+Y7C4 –11 4C(M2~-11-3 sin-f&+12( 4cosa~ 22–3 sin~l ==0

for symmetrical buckling.

The corresponding buckling stresses are given in
figure 15 for different values.

The equations for antisymmetrioal buckling agree
with those for a plate wit4 one transversal stiffener
at 1/3 of its length. (See (64) and (65)~ also fig. 14.)
The ratios a in those equations must be replaced by
a/2. The discussion of antisgmmetrieal buskling is
omitted since the buckling conditions (64) and (65)
have been discussed before.

From (74) we obtain the buckling values:

)(k=(~+.~* m=I,2,3...l.

The pla%e ouckle; li~~ the nonstiffenq~ plate with
3, 6, 9 ... half-wa~es in longitudinal directions so
that nodal lines arise at the etiffenersti

The buckling

stresses from (75) give the curves for the symmetrical
buckling forms, for which the stiffeners, also bend at
buckling. These curves, like the corresponding curves

of the antisymmetrical buckling, also hp.preach .asym tot-
ically the minimum value k = 4

iforincreasing rat o a.
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Si~ce lmckling condition (75) is satisfied for any
value , if

4 COS2 ;A1-3=4cos2 @-3 =0

it follows for the corresponding values

(ml -f-m.2)2
a = ~ml m2- and X = -–fi -----

.

that ml ,ma = 1, 5, 7 .,. Therefore the curves, depending

on Y, touch each other at the intersections of the curves
for 1 and5, 5 and7 .. half-waves of the nonstiffened
plate. At the intersections of the curves for 1 and 3,
3 and 5 ... half-waves of the nonstiffened plate, the lmck-
ling condition (74), which is independent of Y, confirms
the already mentioned fact, that also in these points the
plate %uckles independently of the stiffeners.

In the sections in which the buckling conditions give

the smallest buckling values, the curves are full lines.

It is evident from the continuous change of symmetrical
and antisymmetrical buckling forms that %oth types are of
equal significance~

Translation ly W. L. Koch,
California Institute
of Technology

——-— nm.-m m—mll 111mm11 ml-mm m-mm ■ mmu 1 1111 111
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Figure 6.- Buckling forms of a plate with longitudinal stiffener in the

).—-—
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tancws. The dotted lines for symmetricalbuckll
Tform(at 6 = O,l)Correspcadto Timoshenko~s”solutens.

(All borders hinged).
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